Deranged Lipid Profile - A Cardiovascular Risk Factors Among Adolescents

Pranam G. M.*, Usha Pranam G.*, Tejesh S.**, Manjunath G. A.***
*Assistant Professor. **designation is not provided ***Professor., Department of Paediatrics, Navodaya Medical College, Raichur.

Abstract

Background: The magnitude of overweight and obesity has been on the increasing trend among Indian children that range to 9 to 27.5% and 1 to 12.9% respectively. Enhanced obesity in adolescents induces morbidities like hypertension, respiratory dieses, diabetes mellitus, orthopedic disorders, heart diseases and cardiovascular risks and elevated serum lipid concentrations especially of VLDL and high LDL-C. O bjective: The study focused on cardiovascular disease risk factors to determine the prevalence of cardiovascular disease risk factors (pre-hypertension/ hypertension, borderline-high/ high LDL-C, low HDL-C, and prediabetes/ diabetes) by weight status (normal weight, overweight, obese) and their trends among Indian adolescents aged between 12-19 yrs. M ethodology: A school based cross sectional study was carried out in Raichur involving 200 students. Study subjects were selected by systemic random sampling method. With thehelp of preselected proformadata regarding our study parameters werecollected. Thestudy was undertaken in themonth of July and A ugust. After getting detailed information and consent by theguardians of students, theblood samplewas collected and sent to biochemistry department for analysis of lipid profile. Results: Out of 200 subjects, 24% each were from 12 to 13 and 14 to 15 years agegroup and 26% each from 16 to 17 and 18 to 19 years age group. M ajority i.e. 56% was males and 44% werefemales. Distribution of study population according to BMI where 78% were normal, 10% were obese and 12% were overweight. Prevalence of hypertension was observed in 6\% population wherealmost 11.5\%werefrom 18-19years agegroup. Prevalence of diastolic hypertension was 2.5% and seen in males (3.6\%). Diastolic hypertension seen in 2.5% and majority i.e. 3.8% were from $18-19$ yrs age group. High level of triglycerides was observed in 2% of subjects which belongs from 18-19yrs age. Comparison betwen male and female with respect to various study parameters reveled that mean age\& mean LDL differencewas observed statistically significant (<0.05) whereas in other variables themean difference was not proved to besignificant (>0.05). Conclusion: With this study we would liketo place a take homemessage that theover weight and obesity is highly preval ent among adolescents. Among the over weight and obese its found that in few dyslipidemia and hypertension has al ready set in. hence we would suggest thelateadolescents is the best time identify the adolescents with obesity and other risk factors and to adopt necessary life style modifications.

K eywords: Overweight; Hypertension; Orthopedic Disorders; Triglycerides.

Introduction

Studying trends of changes in prevalence of overweight and Obesity has become an important anthropometric study as it allows researches and
policy makers to design specific and targeted programs aimed at checking physiological abnormalities in adolescents in India. The magnitude of overweight and obesity has been on the increasing trend among Indian children that range to 9 to 27.5% and 1 to 12.9% respectively ${ }^{[1,2,3]}$.

[^0]Developed and developing countries across theglobe has shown nutritional disorder among children and adolescents especially hypertension, diabetics and CVD [4,5,6,7,8,9,10,11]. Studies reveal that overweight children have a greater chance of becoming overweight adolescents and obese adults compared to children of normal weight [12,13]. Enhanced obesity in adolescents induces morbidities like hypertension, respiratory dieses, diabetes mellitus, orthopedic disorders, heart diseases and cardiovascular risks and elevated serum lipid concentrations especially of VLDL and high LDL-C [12,14,15]. There has been studies pertaining to adolescent and teenage obesity and overweight in pockets of areas across India [16,17,18,19,20, $21,22,23,24,25,26,27,28,29,30]$.

M ethodology

A school based cross sectional study was carried out in Raichur involving 200 students. Study subjects were selected by systemic random sampling method. With the help of preselected proforma data regarding our study parameters were collected. Students aged 12 - 19 yrs were categorized into category I (12-13 yrs), category II ($14-15 \mathrm{yrs}$), category III (16-17yrs) and category IV ($18-19 \mathrm{yrs}$) for data analysis purpose. There was a 100% response from the subjects of selected group I and IV. The study was undertaken in the month of July and August 2014. After getting detailed information and consent from the subject and their guardian blood sample of the students was collected and sent to biochemistry department for analysis of lipid profile.

Statistical analysis

Total sample ($\mathrm{n}=200$) was divided into 4 age groups: group I ($12-13$ yrs, $n=50$), group II (14-15 yrs, $\mathrm{n}=50$), group III ($16-17 \mathrm{yrs}, \mathrm{n}=50$) and group IV ($18-19 y r s, n=50$). Statistical analysis was done by using SPSS 19.0 version. Data are presented as mean, standard deviation and percentages. Pearson ChiSquare test was applied to find out association between two variables. P-value <0.05 was significant and <0.001 was considered statistically highly significant. Since the outcomes within a cluster are likely to be correlated, the data wereanalyzed as a cluster sample to obtain correct estimates of standard deviation and standard error. Mean difference between variables (quantitative) was compared by using unpaired't' test and oneway ANOVA.

Results

Out of 200 subjects, 24% each werefrom 12 to 13 and 14 to 15 years age group and 26% each from 16 to 17 and 18 to 19 years age group. Of the 200 respondents 56% were males and 44% werefemales. Majority (31.8%) of females werefrom $16-17$ yrs age group whereas 35.8% of females were from 18 -19 yrs age group. A ssociation between agegroup and sex was found statistically significant ($p<0.05$). Distribution of study population according to BMI where 78% werenormal, 12% were overweight and 10% wereobese. Majority of study population (72.2\%) of females and 82.1% of males werehaving normal BMI. Prevalence of obesity amongst females was 18.2% \& amongst males was 3.6%. Association between BMI and sex was found to be statistically significant ($\mathrm{p}<0.05$).

Out of $20,40 \%$ of obese werefrom $14-15 \mathrm{yrs}$ age group and out of 24 overweight, 33.3% each were from 12-13\&16-17yrs agegroup. Association between BMI and age was found to be statistically not significant ($p>0.05$). Distribution according to SBP \& sex reveals that 92.1% of females and 83.9% of males having SBP between $120-130 \mathrm{mmH}$ g. Association between SBP \& sex was not statistically significant ($p<0.05$). Prevalenceof hypertension was observed in 6% population wherealmost 11.5% were from 18-19yrs of agegroup. Prevalence of diastolic hypertension was 2.5% and seen in males (3.6\%). Diastolic hypertension seen in 2.5% and majority i.e. 3.8\% werefrom 18-19yrs agegroup.

High level of triglycerides was observed in 2\% of subjects which belongs from 18 -19 yrs age.

M ajority of subjects 32.5% having HDL within range of 31-40. A ssociation between HDL and age was found to behighly significant ($\mathrm{p}<0.001$) M ore than half i.e.57.5\% having LDL between 51-100 $\mathrm{mg} / \mathrm{dl} .41 .5 \%$ subjects have their LDL between $101-150 \mathrm{mg} / \mathrm{dl}$, of which majority (63.5%) were from 18-19 years of age group Association between LDL and age was not found to be statistically significant ($p>0.05$). Only 1.5% subjects were having high cholesterol ($>200 \mathrm{mg} /$ dl) of which 4.2% were from $12-13 \mathrm{yrs}$ agegroup. Association between level of cholesterol and age was not statistically significant ($p>0.05$). Mean BMI value (23.5) were observed to be at higher side in 18-19 yrs age as compare with other age group. Comparison of mean difference between various age group was found statistically highly significant ($\mathrm{p}<0.001$). M ean SBP was found higher i.e. 133.85 in $18-19$ yrs age.

Comparison of SBP mean differencebetween various age group was found statistically not significant ($p>0.05$). Mean HDL was higher in 12-13yrs age as compared to other age group which proved to be statistically highly significant (<0.001). Comparison of mean differencein LDL level at differentagegroup was not proved to besignificant (>0.05). Thedifferencein
mean cholesterol level in various agegroup was seen to benot significant statistically (>0.05). Comparison between maleand femalewith respectto variousstudy parameters reveled that mean age \& mean LDL differencewas observed statistically significant (<0.05) whereas in other variables themean differencewas not proved to besignificant (>0.05).

Table 1: Distribution of study population according to BMI \& sex

BM I Grades	Female	$\%$	M ale	$\%$	Total
Normal	64	72.7	92	82.1	156
Obese	16	18.2	4	3.6	20
Overweight	8	9.1	16	14.3	24
Total	88	100.0	112	100.0	200

Pearson Chi-Square=12.18, df=2
$\mathrm{P}=0.002$ (<0.05) Significant

Table 2: Distribution of study population according to BMI \& age

A ge group (years)	Normal	BMI G rades	Total	
Obese	Overweight			
12 to 13	$36(23.1 \%)$	$4(20 \%)$	$8(33.3 \%)$	48
14 to 15	$36(23.1 \%)$	$8(40 \%)$	$4(16.7 \%)$	48
16 to 17	$40(25.6 \%)$	$4(20 \%)$	$8(33.3 \%)$	52
18 to 19	$44(28.2 \%)$	$4(20 \%)$	$4(16.7 \%)$	52
Total	$156(100 \%)$	$20(100 \%)$	$24(100 \%)$	200

Pearson Chi-Square $=5.94, \mathrm{df}=6$
$P=0.43$ (>0.05) N ot significant

Majority of study population (72.2\%) Of females and 82.1% of males were having normal BMI. Prevalence of obesity amongst females was 18.2% \& amongst males was 3.6%.

A ssociation between BMI and sex was found to be statistically significant ($p<0.05$)

Out of $20,40 \%$ of obese were from $14-15$ yrs age group and out of 24 overweight, 33.3% each were from 12-13\&16-17 yrs agegroup.

A ssociation between BM I and age was found to be statistically not significant ($p>0.05$)

Table 3: Distribution of study population according to different variables
$\left.\begin{array}{cccccccc}\hline & \begin{array}{c}\text { N } \\ \text { Statistic }\end{array} & \begin{array}{c}\text { Range } \\ \text { Statistic }\end{array} & \begin{array}{c}\text { Minimum } \\ \text { Statistic }\end{array} & \begin{array}{c}\text { Satistics } \\ \text { Statistic }\end{array} & \text { Statistic } & \text { M ean } & \text { Std. Error }\end{array} \begin{array}{c}\text { Std. Deviation } \\ \text { Statistic }\end{array}\right]$

Table 4: Distribution according to SBP \& sex

SBP	Sex				
	Females	$\%$	M ales	$\%$	Total
$120-130$	81	92.1	94	83.9	175
$130-140$	5	5.7	8	7.2	13
$140-150$	0	0	10	8.9	10
>150	2	2.2	0	0	2
Total	88	100	112	100	200

Distribution according to SBP \& sex reveals that 92.1% of females and 83.9% of males having SBP between $120-130 \mathrm{mmHg}$

Association between SBP \& sex was not statistically significant ($p<0.05$)

Table 5: Age wise distribution of SBP

SBP	Age				
	$\mathbf{1 2 - 1 3}$	$\mathbf{1 4 - 1 5}$	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$	Total
$120=130$	$44(91.7 \%)$	$41(85.4 \%)$	$48(92.3 \%)$	$42(80.8 \%)$	$175(87.5 \%)$
$130=140$	$4(8.3 \%)$	$5(10.4 \%)$	$1(1.9 \%)$	$3(5.8 \%)$	$13(6.5 \%)$
$140=150$	$0(0 \%)$	$2(4.2 \%)$	$2(3.9 \%)$	$6(11.5 \%)$	$10(5 \%)$
>150	$0(0 \%)$	$0(0 \%)$	$1(1.9 \%)$	$1(1.9 \%)$	$2(1 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

Prevalence of hypertension was observed in 6\% years agegroup. population where almost 11.5 \% were from 18-19

Table 6: Distribution of DBP according to Age

DBP	Age				
	$\mathbf{1 2 - 1 3}$	$\mathbf{1 4 - 1 5}$	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$	Total
$80-84$	$33(68.75 \%)$	$19(39.6 \%)$	$39(75 \%)$	$21(40.5 \%)$	$112(56 \%)$
$84-88$	$15(31.25 \%)$	$29(60.4 \%)$	$11(21.2 \%)$	$28(53.8 \%)$	$83(41.5 \%)$
$88-92$	$0(0 \%)$	$0(0 \%)$	$1(1.9 \%)$	$1(1.9 \%)$	$2(1 \%)$
992	$0(0 \%)$	$0(0 \%)$	$1(1.9 \%)$	$2(3.8 \%)$	$3(1.5 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

Diastolic hypertension seen in 2.5% and majority i.e. 3.8% werefrom $18-19$ yrs age group.
Table 7: Distribution of TG according to Age

TG	12-13	$\mathbf{1 4 - 1 5}$	A ge	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$
<100	$5(10.4 \%)$	$5(10.4 \%)$	$16(30.8 \%)$	$8(15.4 \%)$	Total
$101-150$	$28(58.3)$	$19(39.6 \%)$	$20(38.4 \%)$	$24(46.1 \%)$	$91(45.5 \%)$
$151-200$	$15(31.3 \%)$	$24(50 \%)$	$16(30.8 \%)$	$16(30.8 \%)$	$71(35.5 \%)$
>200	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$	$4(7.7 \%)$	$4(2 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

High level of triglycerides was observed in 2% of subjects which belongs from 18-19 yrs age.
Table 8: Distribution of HDL according to Age

HDL	Age			Total	
	$\mathbf{1 2 - 1 3}$	$\mathbf{1 4 - 1 5}$	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$	
<20	$0(0 \%)$	$0(0 \%)$	$8(15.4 \%)$	$4(7.7 \%)$	$12(6 \%)$
$21-30$	$12(25 \%)$	$12(25 \%)$	$16(30.8 \%)$	$19(36.5 \%)$	$59(29.5 \%)$
$31-40$	$0(0 \%)$	$24(50 \%)$	$28(53.8 \%)$	$13(25 \%)$	$65(32.5 \%)$
$41-50$	$36(75 \%)$	$8(16.7 \%)$	$0(0 \%)$	$16(30.8 \%)$	$60(30 \%)$
>50	$0(0 \%)$	$4(8.3 \%)$	$0(0 \%)$	$0(0 \%)$	$4(2 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

Pearson Chi-Square=54.7, df=12 $\mathrm{P}=0.0001$ (<0.001) Highly significant
Majority of subjects 32.5% having HDL within range of $31-40$.
Association between HDL and age was found to be highly significant ($p<0.001$)
Table 9. Distribution of LDL according to Age

LD L	A ge			Total	
	$\mathbf{1 2 - 1 3}$	$\mathbf{1 4 - 1 5}$	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$	
<50	$0(0 \%)$	$0(0 \%)$	$2(3.8 \%)$	$0(0 \%)$	$2(1 \%)$
$51-100$	$32(66.7 \%)$	$29(60.4 \%)$	$35(67.4 \%)$	$19(36.5 \%)$	$115(57.5 \%)$
$101-150$	$16(33.3 \%)$	$19(39.6 \%)$	$15(28.8 \%)$	$33(63.5 \%)$	$83(41.5 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

Pearson Chi-Square=38.3, df=12
$\mathrm{P}=0.078(>0.05)$ Not Significant

M orethan half i.e.,57.5\% having LDL between 51$100 \mathrm{mg} / \mathrm{dl} .41 .5 \%$ subjects have their LDL between $101-150 \mathrm{mg} / \mathrm{dl}$, of which majority (63.5%) werefrom

18-19years of agegroup A ssociation between LDL and agewas not found to be statistically significant ($p>0.05$)

Table 10: Distribution of Cholesterol according to Age

Cholesterol	$\mathbf{y y y y}$	Age	Total		
	$\mathbf{1 2 - 1 3}$	$\mathbf{1 4 - 1 5}$	$\mathbf{1 6 - 1 7}$	$\mathbf{1 8 - 1 9}$	
<100	$1(2.1 \%)$	$0(0 \%)$	$5(9.6 \%)$	$2(3.8 \%)$	$8(4 \%)$
$101-150$	$15(31.2 \%)$	$15(31.2 \%)$	$19(36.6 \%)$	$23(44.3 \%)$	$72(36 \%)$
$151-200$	$30(62.5 \%)$	$32(66.7 \%)$	$28(53.8 \%)$	$27(51.9 \%)$	$117(58.5 \%)$
>200	$2(4.2 \%)$	$1(2.1 \%)$	$0(\% \%)$	$0(0 \%)$	$3(1.5 \%)$
Total	$48(100 \%)$	$48(100 \%)$	$52(100 \%)$	$52(100 \%)$	$200(100 \%)$

Pearson Chi-Square=11.6, df=12
$P=0.77$ (>0.05) N ot Significant

Only 1.5% subjects were having high chol esterol ($>200 \mathrm{mg} / \mathrm{dl}$) of which 4.2% werefrom $12-13$ yrs age group.

A ssociation between level of cholesterol and age was not statistically significant ($p>0.05$)

Table 11: Comparison between male and female subjects with reference to various parameters

V ariables	SEX	N	Mean	Std. Deviation	\mathbf{t}	\mathbf{p}	Inference
A ge	Male	112	15.96	2.42	2.724	0.007	Significant
	Female	88	15.09	2.00		<0.05	
BM I	Male	112	21.91	3.11	-.944	0.346	Not significant
	Female	88	22.40	4.21		>0.05	
SBP	Male	112	132.93	6.54	1.973	0.053	Not significant
	Female	88	131.00	7.24		>0.05	
D BP	Male	112	86.00	3.79	.819	0.414	Not significant
	Female	88	85.55	4.02		>0.05	
TG	Male	112	124.61	33.80	-2.433	0.060	Not significant
	Female	88	136.36	27.18		>0.05	
H D L	Male	112	34.29	9.72	-.500	0.618	Not significant
	Female	88	35.00	10.39		>0.05	
LD L	Male	112	87.86	14.88	-5.623	0.007	Significant
	Female	88	102.59	22.07		<0.05	
Cholesterol	Male	112	155.79	23.69	-1.007	0.18	Not significant
	Female	88	161.86	28.92		>0.05	

Comparison between maleand female with respect to various study parameters reveled that mean age\& mean LDL difference was observed statistically
significant (<0.05) whereas in other variables the mean difference was not proved to be significant (>0.05)

Fig. 1:

Fig. 2:

Discussion

M oreand morekids areat risk as per the medical research, that high levels of cholesterol are a major factor contributing to heart disease and stroke. Adolescent cholesterol levels especially with afamily history of high chol esterol leads to prematureheart diseases; however, problems associated with high cholesterol generally don't show up for years so making the between teenager'sheath and cholesterol can be difficult. Published literatureon theprevalence of childhood obesity in India consists mainly of cross-sectional studies in different regions of the country, reporting its burden at a specified time. Studies from South India have reported an obesity prevalence of 3.6% in adolescents of agegroup 1318 years of Chennai in year $2002{ }^{[1]}$ and 3.4% in children and adolescents of age-group 5-16 years of Mysore in year 2009. Several cross-sectional studies havebeen published fromNorth India reporting the childhood obesity prevalence in the range of 3.6$7.0 \%{ }^{[45,46,42]}$. However, only onestudy, from Kerala (South India), has reported secular trend in the prevalence of childhood obesity ${ }^{[47]}$. These authors reported a significant increase in the preval ence of overweight and obesity from 4.94% and 1.26% in 2003 to 6.57% and 1.89% in 2005 , respectively, in children aged 5-16 years. Theincreasing trend was noted in both sexes and privately-funded schools only. However, theinvestigators used CDC-defined cutoffs for determining the overweight and obesity prevalence. As thereferencepopulation for CDC cutoffs did not includeA sian Indians, thesecut-offsmay not accurately represent the burden of childhood obesity in India. On the other hand, weused ethnic-specificcut-offsfor our study population, which have been previously reported in adult Asian Indian populations also ${ }^{[19,48,49]}$.

The BMI classification has four categories: (1) under-nutrition (2) normal (3) overweight and (4) obese. The levels of obesity and overweight varied
across the socio economic status. India is facing a twin epidemic (19) in theform of under- and overnutrition in children and adolescents. The prevalence of obesity was morethan 5 per cent and overweight more than 7 per cent among those belonging to upper socio economic class. Thestudy cannot betaken as representativeof theentiredistrict; however, a number above 10% (of obese people) is very high so 16.3% of obese adolescents in an area is high (and therefore a matter of concern). 7\% of those who wereoverweight belonged to the higher socioeconomic class. Works of ${ }^{[50,51,52,199}$, say, increasing preval ence of obesity and insulin resistance has been thetendency in A sian Indians. Thetwin epidemic of Indians either dueto over-nutrition and/ or undernutrition; theformer predisposed to insulin resistance type2 diabetes mellitus (T2DM) and the latter a host of deficiency disorders both category end up with metabolic syndromes. A ccording to ${ }^{[19]}$, high total fat and SFA (saturated fatty acids) intake and a low intakeof MUFAs (monounsaturated fatty acids) and 3PUFAsshowed imbalanced nutrition, which could beresponsiblefor theincreasing prevalence of obesity and insulin resistance in Indian adolescents and young adults.

The overall prevalence of overweight and obese adolescents among theagegroup wasfound to be 12% and 10\% respectively. A study in Hyderabad showed thatthepreval enceof overweight was 7.2% among the 12-17 yrs agegroup (Laxmaiah et al., 2007) ${ }^{31}$ and 9.9\% among the urban group of South Karnataka and Ludhiana (A ggarwal et al., 2008; K otian et al., 2010) ${ }^{32}$ Studies by other workers in India (Ramachandran et al.,2002; Chatterjee, 200233; Kaur et al., 2005^{34} and Khadilkar and Khadilkar, 200435) and National nutrition M onitoring Bureau surveys in 2002, rural areas, reported the prevalence of as little as 0.6%.

Our study value is nearer to the urban value indicating that the demographic profile of Raichur is marching from peri-urban sector to urban segments. Out of $20,40 \%$ of obese werefrom 14-15 yrs agegroup and out of 24 overweight, 33.3% each werefrom 12-13\&16-17yrs age group. Association between BMI and age was found to be statistically not significant ($p>0.05$). Overweight and obesity weremarginally higher in thepubertal age groups of 13-16yrs, perhaps because of increased adipose tissueand overall body weightin respondents during puberty. Gender is one of the biological factors affecting the weight status. In our study the prevalence of obesity amongst females was 18.2\% and amongst males was 3.6%. From the literature it is observed that the prevalence of overweight is generally higher in females than males (Gopinath et
al., 199440, Gopalan 19984ㄹ, M ohan et al., 200142, Misra et al., 200143, Ramachandran et al., 2002, Reddy et al., 2012, Shukla et al., 200244,). Findings of studies conducted in Indiaby National Family Health Survey III (2005-06) haverevealed a much higher percentage for obesity/ overweight in females than males.

Prevalence of hypertension was observed in 6\% population whereal most 11.5% werefrom 18-19yrs of agegroup. Prevalence of diastolichypertension was 2.5% and seen in males (3.6\%). Diastolichypertension seen in 2.5% and majority i.e. 3.8% were from 18-19 yrs age group. Works by others reveal the value of Gupta and Gupta (1996) ${ }^{36}$ 44\%, Dholpuria et al.,(2007) ${ }^{3750 \%}$ and Gulati and Saxena (2002) ${ }^{3874 \%}$.

Cholesterol adverseness is based on its categorical variations as HDL Cholesterol, LDL Cholesterol, Triglycerides, and Direct LDL Cholesterol. Our study revealed 32.5% of the respondents having HDL within range of 31-40. High level of triglycerides was observed in 2% of subjects which belongs from 18 -19 yrs age. Only 1.5% subjects were having high cholesterol ($>200 \mathrm{mg} / \mathrm{dl}$) of which 4.2% werefrom $12-13$ yrs age group. Mean BMI value (23.5) were observed to be at higher side in 18-19 yrs age and mean SBP 133.85 higher in the sameagegroup. Thus dyslipidemia appears to bein the group of less than $14-15 y r s$ resembling serum lipid and lipoprotein changes induced by puberty and similar studies has been done by the STRIP study ${ }^{[399]}$. Such studies have been important to use as a marker of future cardiovascular disease risks.

Our study revealed the prevalence of prehypertension and hypertension in the study population at 6\%, wherein, 11.5% were from 18-19 yrs of age group. And prevalence of diastolic hypertension was 2.5% and the majority i.e., 3.8% was from 18-19 yrs age group. The present study showed elevated systolic and diastolic blood pressure in both obesity and overweight. Higher serum total cholesterol, triglycerides and LDL-cholesterol levels in both obesity and overweight. Lipid profileis used as part of a cardiac risk assessment to help determine an individual's risk of heart disease and to help make decisions about what treatment may be best if there is borderline or high risk. The results of the lipid profileare considered al ong with other known risk factors of heart diseaseto develop a plan of treatment and follow-up.

Conclusion

With this study wewould like to placea takehome message that theover weight and obesity is highly
prevalent among adolescents. A mong the over weight and obese itsfound that in few dyslipidemia and hypertension has already set in. hence wewould suggest thelate adolescents is the best time identify the adolescents with obesity and other risk factors and to adoptnecessary life stylemodifications.

References

1. Ramachandran A, Snehalatha C, Vinitha R, Thayyil M, Kumar CK, Sheeba L, et al.Prevalence of overweight in urban Indian adolescent school children. Diabetes Res Clin Pract 2002;57:185-90.
2. Kapil U, Singh P, Pathak P, Dwivedi SN , Bhasin S. Prevalence of obesity among affluent adolescent school children in Delhi. Indian Pediatr 2002;39:365-8.
3. Chadha SL, Tandon R, Shekawat S, Gopinath N . A n epidemiological study of blood pressure in school children (5-14 years) in Delhi. Indian Heart J 1999;51:178-82.
4. LimaSCVC, ArraisRF, Almelda MG, SouzaZM and Pedrosa LFC. (2004). Plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents. J Pediatr (Rio J), 80(1): 23-28.
5. Stankov I, OldsT and Cargo M. (2012). Overweight and obese adolescents: what turns them off physical activity? Int. J of Behavioural N utrition and physical Actvity, 9:53.
6. May, AL, Kuklina EV and Yoon PW (2012). Prevalence of cardiovascular diseaserisk factors among US adolescents, Pediatrics, 129: 1035. DOI:10.1542/ peds.2011-1082.
7. Daniels SR, Benuck I, Christakis DA et al.,(2012). Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary Report.(web accessed dt: 12/ 07/ 2014).
8. Lifestyles Statistics (2013). Health and social careinformation center. www.ic.nhs.uk
9. American Heart A ssociation (2013). Overweight and obesity. Statistical fact sheet 2013 uptade. (Web accessed dt: 12/ 06/ 2014).
10. Overweight and Obesity (Web access). Childhood obesity facts - prevalence of childhood obesity in the United States, 2011-2012. CDC -CENTRES FOR DISEASE CONTROLAND PREVENTION. http:/ / www.cdc.gov/ obesity/ data/ childhood.html.
11. Alberty RR and A Ibertyova D. (2013). Serum lipid growth curves for children and adolescents in predicting adult dyslipidemia (Data from Slovak lipid community study). Scientific research, an academic publisher,Vol.3, No.5.
12. Dietz WH, Bandini LG, Gortmaker S. Epidemiologic and metabolic risk factors for childhood obesity. Prepared for Fourth congress on Obesity Research, Austria. Klin Pediatr 1998;202:69-72.
13. Sorof JM, Poffenbarger T, Franco K, Bernard L, Portman RJ. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr 2002;140:660-66.
14. Riva P, Martini G, Rabbia F, Milan A, Paglieri C, Chiandussi L , et al. Obesity and autonomic function in adolescence. Clin Exp Hypertens 2001;23:57-67.
15. Sorof JM, Turner J, M artin DS, Garcia K, Garami Z, Alexandrov AV, et al. Cardiovascular risk factors and sequelae in hypertensive children identified by referal versus school based screening. Hypertension 2004;43:214-8.
16. Elizabeth KE. (2001). A novel growth assessment chart for adolescents. Indian Pediatrics, 38: 10611064.
17. Kumar S, Mazumder S, BanerjeeS, MukherjeeA, Lahiri R and MukherjeeDK. (2003). Lipid profile of Indian children and adolescents. J Ind Med Assoc, 101(7): 403-404, 406.
18. Mehta SK and Younnoszai A. (2006). Childhood obesity and health Research. Eds: Richard K. Flamenbaum, pp.55-70. ISBN 1-60021-036-8 © 2006 N ova Science Publishers, Inc.
19. Gupta N, Shah P, Goe K, M isra A et al., (2010). Imbalanced dietary profile, anthropometry and lipids in urban asian Indian adolescents and young adults.J of theAm. Col. Of Nutr, Vol 29, No. 2, 81-91.
20. Kotian MS, Kumar GS and Kotian SS (2010). Prevalence and determinants of overweight and obesity among adolescent school children of South Karnataka, India. Indian J Community Med, 35(1): 176-178.
21. Vadera BN, Yadav SB, Yadav BS, Parmar DV and Unadkat SV. (2010). Study on obesity and influence of dietary factors on the weight status of an adult population in Jamnagar city of Gujrat: a cross-sectional analytical study. Indian J Community Med, 35: 482-486. DOI: 10.4103/ 0970-0218.74346.
22. Rao SN, Gurumurthy P, Gururajan P, A rumugam SB, Saibabu, Kirthivasan V and Cherian KM (2010). Clinical and biochemical parameters in relation to serum leptin levels in South Indian children and adolescents. IndianJ Pediatr 77 (5): 555-559.
23. Ebrahim SM, KinraS, A ndersen E, Ben-shlomo Y, Lyngdoh T etal., (2010). The effect of rural-tourban migration on obesity and diabetes in India: A cross-sectional study. PLoSMed 8(5): 10.1371/ © Ebrahim et al.
24. Meenakshisundaram R, Rajendiran C and Thirumalaikolundusubramanian P. (2010). Lipid and lipoprotein profiles among middle aged mal e smokers: a study from Southern India. Tobacco Induced Diseases, 8:11. doi:10.1186/ 1617-9625-8-11..
25. Marwaha RK, Khadgawat R, Tandon N, Kanwar R, Narang A and Bhadra K. (2011). Reference intervals of serum lipid profilein healthy Indian school children and adolescents. Clin Biochem, 44(10-11): 760-766. doi: 10.1016/ j.clinbiochem.2011.05.011. Epub 2011 May 19.
26. Reddy MN, Kumar K and Jamil K. (2012). New world syndrome (obesity) in South India. Open A ccess Scientific Reports, 1:567. Doi: 10.4172 scientificreports 567.
27. Siddiqui NI and BoseS. (2012). Prevalence and trends of obesity in Indian school children of different socioeconomic class. Ind. J of Basic \& Appl. Res, Vol. 2, Issue5, pg 393-398.
28. Rivero E. (2013). A mong Indian immigrants, religious practice and obesity may be linked, study shows. In Science + Technology. http:/ / newsroom.ucla.edu/ releases/ among-asian-indians-religiosity-247359.
29. Tangaraj S, Jadhav J, Suresh M and Shruthi. (2013). Study of prevalence and dietary factors affecting obesity among slum dwellers aged 30 yrs and abovein Bangalore TA F Prev. Med Bull. 12(5): 495-500.
30. Ravikumar VB, Patil SV and Ranagol A. (2014). Prevalence of overweight, obesity and hypertension amongst school children and adolescents in North K arnataka: A cross sectional study. Vol. 4Issue3, Pg 260-264. DOI: 10.4103/ 2230-8598.137713.
31. Laxmaiah A, Nagalla B, Vijayaraghavan K, Nair M. (2007). Factors affecting prevalence of overweight among 12-17 yr old urban adolescents in Hyderabad, India. Obesity (Siler Spring), 15:1384-90.
32. Aggarwal T, Bhatia RC, Singh D and Sobti PC. (2008). Prevalence of obesity and overweight in affluent adolescents from Ludhiana, Punjab. Indian Pediatr, 45:500-01.
33. Chatterjee p. (2002). India sees paralle rise in malnutrition and obesity. Lancet, 360:1948.
34. Kaur S, Kapil U and Singh P. (2005). Pattern of chronic diseases amongst adolescent obese children in developing countries. Curr. Sci, 88: 1052-6.
35. Khadilkar VV and Khadilkar AV (2004). Prevalence of obesity in affluent school boys in Pune. Indian Pediatr. 41:857-8.
36. Gupta R and Gupta VP (1996). M eta-analysis of coronary heart disease prevalence in India. Ind HeartJ. 48:241-5.
37. Dholpuria R, Raja S, guptaBK, Chahar CK et al., (2007). Atherosclerotic risk factors in adolescents. Ind pediatr, 74:823-6.
38. Gulati S and Saxena A. (2002). Study of lipid profile in children of patients with premature coronary artery disease. Indian pediatrics, 40: 556-560.
39. Ninikoski H, lagstrom H, Jokinen E, Siltala M, Ronnemaa T et al., (2007). Impact of repeated dietary counseling between infancy and 14yrs of age on dietary intakes and serum lipids and lipoproteins. Circulation, 116:1032-40.
40. Gopinath N, Chadha SL, Jain P, Shekhawal et al.,(1994). An epidemiological study of obesity in adults in the urban population of Delhi. J Assoc. Physicians India. 42:212-5.
41. Gopalan C. (1998). Obesity in the India urban middleclass N FI Bull. 19:1-5.
42. Mohan V, Shanthirani S, Deepa R, Premalatha G et al., (2001). Chennai urban based population study (CUPS No.4). intra-urban differences in the prevalence of the metabolic syndromein S . India - the Chennai Urban population study. Diabet Med. 18:280-7.
43. MishraA, Pandey RM, DeviJR, Sharma R, Vikram NK et al., (2001). High prevalence of diabetes, obesity and dyslipidaemia in urban slum population in northen India. Int. J Obes Relat M etab Disord 25: 1722-9.
44. Shukla HC, GuptaPC, M ehta HC and H ebertJR. (2002). Descriptiveepidemiology of body mass index of an urban adult population in Western India.J Epidemiol Community H ealth, 876-80.
45. Bhardwaj S, Misra A, Khurana L, Gulati s, Shah P, Vikram NK. (2008). Childhood obesity in Asian Indians: a burgeoning cause of insulin resistance, diabetes and sub-clinical inflammation. Asia PacJ Clin Nutr 17 Suppl 1:172-175.
46. SharmaA, Sharma K, M athur KP. Growth pattern and prevalenceof obesity in affluentschool children of Delhi. Public Health Nutr. 2007;10:485-491.
47. Raj M, Sundaram KR, Paul M, DeepaAS, Kumar RK. Obesity in Indian children: timetrends and relationship with hypertension. Natl Med J India. 2007;20:288-29.
48. MisraA. Revisions of cutoffs of body mass index to defineoverweight and obesity areneeded for the Asian-ethnic groups. Int J Obes Relat Metab Disord. 2003;27:1294-1296. [PubMed]
49. MisraA , Khurana L. Obesity and themetabolic syndrome in developing countries. J Clin Endocrinol Metab. 2008;93:S9-30.
50. Misra A, Vikram NK, Arya S, Pandey RM, Dhingra V, ChatterjeeA, Dwivedi M, Sharma R, Luthra K, Guleria R, Talwar KK. (2004). High prevalence of insulin resistancein postpubertal A sian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat. Int. J Obes Relat Metab Disord 28: 1217-1226.
51. Misra A, Vikram NK. (2004). Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indians: evidence and implications. Nutrition 20: 482-491.
52. VikramNK, MisraA, Pandey RM, LuthraK, Wasir JSand DhingraV.(2006). Heterogeneousphenotypes of insulin resistance and its implications for defining metabolic syndrome in Asian Indian adolescents. Atherosclerosis, 186: 193-199.
53. Adlakha A. (1996). Population Trends: India. International Brief U.S. Department of Commerce Economics and Statistics Administration, Bureau of Census. (Accessed dt: 23/08/2014). http:/ / www.census.gov/ipc/ prod/ib9701.pdf.

[^0]: Corresponding Author: Usha Pranam, H.No 5, Bheemaraya Colony, Yeramarus Camp-584135, Raichur, Karnataka.
 E-mail: drushagowdar@rediffmail.com

